Visfatin, Obesity, and Physical Activity: A Key Regulator of Metabolismand Inflammation

Authors

  • Firouzh Dehghan Department of Sport Sciences, Kish International Campus, University of Tehran, Kish Island, Iran, Kish, Iran. Author
  • Rahman Soori Author
  • Seyedreza Mousavikani Author
  • Reza Rezaei Shahri Author
  • Mahsa Amir Ehsani Author

DOI:

https://doi.org/10.5530/ajphs.2025.15.82

Keywords:

Exercise, Visfatin, Adipokines, Energy homeostasis, Metabolic syndrome, Inflammation

Abstract

Visfatin, an adipocytokine implicated in metabolic and inflammatory regulation, has garnered attention for its potential role in obesity related disorders, insulin resistance, and liver disease. This review synthesizes current human and animal studies examining the effects of physical activity, dietary interventions, and combined strategies on circulating visfatin levels. Evidence suggests that exercise intensity, duration, and modality, especially when paired with anti-inflammatory supplements such as ginger, omega-3, or thylakoids, can significantly modulate visfatin, particularly in metabolically compromised populations. While aerobic and combined exercise protocols are generally more effective than low-intensity or resistance-only programs, responses vary by age, sex, hormonal status, and comorbidities. Additionally, findings from case-control studies in NAFLD and mechanistic insights from animal models highlight visfatin’s complex, context-dependent behavior. The review underscores the need for individualized, integrative interventions and further research to elucidate visfatin’s role as a biomarker and therapeutic target in metabolic health.

References

Bilski, J., Jaworek, J., Pokorski, J., Nitecki, J., Nitecka, E., Pokorska, J., Mazur-Bialy, A., & Szklarczyk, J. (2016). Effects of time of day and the wingate test on appetite perceptions, food intake and plasma levels of adipokines. Journal of Physiology and Pharmacology, 67(5), 667-676. PMID: 28011947

Blüher, S., Käpplinger, J., Herget, S., Reichardt, S., Böttcher, Y., Grimm, A., Kratzsch, J., & Petroff, D. (2017). Cardiometabolic risk markers, adipocyte fatty acid binding protein (aFABP) and the impact of high-intensity interval training (HIIT) in obese adolescents. Metabolism, 68, 77-87. https://doi.org/10.1016/j.metabol.2016.11.015

Chapman-Lopez, T. J., Funderburk, L. K., Heileson, J. L., Wilburn, D. T., Koutakis, P., Gallucci, A. R., & Forsse, J. S. (2022). Effects of L-Leucine Supplementation and Resistance Training on Adipokine Markers in Untrained Perimenopausal and Postmenopausal Women. The Journal of Strength & Conditioning Research, 38(3), 526-532. https://doi.org/10.1519/JSC.0000000000004661

Curat, C. A., Wegner, V., Sengenès, C., Miranville, A., Tonus, C., Busse, R., & Bouloumié, A. (2006). Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia, 49(4), 744-747. https://doi.org/10.1007/s00125-006-0173-z

Fernández-Real, J. M., Moreno, J. M., Chico, B., Lopez-Bermejo, A., & Ricart, W. (2007). Circulating visfatin is associated with parameters of iron metabolism in subjects with altered glucose tolerance. Diabetes Care, 30(3), 616-621. https://doi.org/10.2337/dc06-1581

Filippatos, T., Derdemezis, C., Gazi, I., Lagos, K., Kiortsis, D., Tselepis, A., & Elisaf, M. (2008). Increased plasma visfatin levels in subjects with the metabolic syndrome. European Journal of Clinical Investigation, 38(1), 71-72. https://doi.org/10.1111/j.1365-2362.2007.01904.x

Fukuhara, A., Matsuda, M., Nishizawa, M., Segawa, K., Tanaka, M., Kishimoto, K., Matsuki, Y., Murakami, M., Ichisaka, T., & Murakami, H. (2005). Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science, 307(5708), 426-430. https://doi.org/10.1126/science.1097243

Gaeini, A., Payamipoor, S., Satarifard, S., & Kordi, M. (2015). Effect of intermittent and continuous exercise in water and land on Visfatin in pre and post menopausal obese women.

Gholami, M., Abdi, A., Abbasi Delooei, A., & Ghanbari-Niaki, A. (2017). The effect of glucose intake on plasma visfatin response following an aerobic exercise session in male students. Hormozgan Medical Journal, 20(6), 365-372. DOI:10.18869/acadpub.hmj.20.6.393

Gholipoor, M., Karimi, M., & Keshavarz, S. (2019). Effect of Aerobic Training with Ginger Supplement on Plasma Levels of Visfatin and Lipid Profile in Middle-aged Obese Men. Report of Health Care, 5(4), 1-7.

Ha, C. H., Swearingin, B., & Jeon, Y. K. (2015). Relationship of visfatin level to pancreatic endocrine hormone level, HOMA-IR index, and HOMA β-cell index in overweight women who performed hydraulic resistance exercise. Journal of Physical Therapy Science, 27(9), 2965-2969. https://doi.org/10.1589/jpts.27.2965

Haus, J., Solomon, T., Marchetti, C., O'Leary, V., Brooks, L., Gonzalez, F., & Kirwan, J. (2009). Decreased visfatin after exercise training correlates with improved glucose tolerance. Medicine & Science In Sports & Exercise, 41(6), 1255. https://doi.org/10.1249/MSS.0b013e318195bad5

Ichinose, K., Maeshima, Y., Yamamoto, Y., Kinomura, M., Hirokoshi, K., Kitayama, H., Takazawa, Y., Sugiyama, H., Yamasaki, Y., & Agata, N. (2006). 2-(8-hydroxy-6-methoxy-1-oxo-1h-2-benzopyran-3-yl) propionic acid, an inhibitor of angiogenesis, ameliorates renal alterations in obese type 2 diabetic mice. Diabetes, 55(5), 1232-1242. https://doi.org/10.2337/db05-1367

Jimenez-Martinez, P., Ramirez-Campillo, R., Alix-Fages, C., Gene-Morales, J., Garcia-Ramos, A., & Colado, J. C. (2023). Chronic resistance training effects on serum Adipokines in type 2 diabetes mellitus: a systematic review. Healthcare, 11(4), 594. https://doi.org/10.3390/healthcare11040594

Jorge, M. L. M. P., de Oliveira, V. N., Resende, N. M., Paraiso, L. F., Calixto, A., Diniz, A. L. D., Resende, E. S., Ropelle, E. R., Carvalheira, J. B., & Espindola, F. S. (2011). The effects of aerobic, resistance, and combined exercise on metabolic control, inflammatory markers, adipocytokines, and muscle insulin signaling in patients with type 2 diabetes mellitus. Metabolism, 60(9), 1244-1252. https://doi.org/10.1016/j.metabol.2011.01.006

Kadoglou, N., Fotiadis, G., Kapelouzou, A., Kostakis, A., Liapis, C., & Vrabas, I. (2013). The differential anti‐inflammatory effects of exercise modalities and their association with early carotid atherosclerosis progression in patients with type 2 diabetes. Diabetic Medicine, 30(2), e41-e50. https://doi.org/10.1111/dme.12055

Karadedeli, M. S., Schreckenberg, R., Kutsche, H. S., & Schlüter, K.-D. (2022). Effects of voluntary exercise on the expression of browning markers in visceral and subcutaneous fat tissue of normotensive and spontaneously hypertensive rats. Pflügers Archiv-European Journal of Physiology, 474(2), 205-215. https://doi.org/10.1007/s00424-021-02629-9

Karimi, U., Mohammadi, A., & Khajehlandi, A. (2018). The effect of 8 weeks aquatic exercise program on plasma visfatin level and some blood factors in obese men. Jundishapur Journal of Chronic Disease Care, 7(4), e83364. https://doi.org/10.5812/jjcdc.83364

Khademosharie, M., & Mollanovruzi, A. (2024). The Effect of 12 Weeks of Combined Training on the Levels of Adiponectin and Visfatin in Women with Gestational Diabetes. Journal of Sabzevar University of Medical Sciences, 31(2), 220-233. https://doi.org/10.30468/jsums.2024.7725.3030

Kozłowska-Flis, M., Rodziewicz-Flis, E., Micielska, K., Kortas, J., Jaworska, J., Borkowska, A., Sansoni, V., Perego, S., Lombardi, G., & Ziemann, E. (2021). Short and long-term effects of high-intensity interval training applied alone or with whole-body cryostimulation on glucose homeostasis and myokine levels in overweight to obese subjects. Frontiers in Bioscience-Landmark, 26(11), 1132-1146. https://doi.org/10.52586/5015

Mellick, P. F., Feger, B. J., Oberlin, D. J., Davis, P. G., & Wideman, L. (2017). High-intensity exercise and carbohydrate supplementation do not alter plasma visfatin. Journal of Sports Science & Medicine, 16(1), 69-76. PMID: 28344453

Moravveji, A., Sayyah, M., Shamsnia, E., & Vakili, Z. (2019). Comparing the prolonged effect of interval versus continuous aerobic exercise on blood inflammatory marker of Visfatin level and body mass index of sedentary overweigh/fat female college students. AIMS Public Health, 6(4), 568-576. https://doi.org/10.3934/publichealth.2019.4.568

Moschen, A. R., Kaser, A., Enrich, B., Mosheimer, B., Theurl, M., Niederegger, H., & Tilg, H. (2007). Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. The Journal of Immunology, 178(3), 1748-1758. https://doi.org/10.4049/jimmunol.178.3.1748

Plinta, R., Olszanecka-Glinianowicz, M., Drosdzol-Cop, A., Chudek, J., & Skrzypulec-Plinta, V. (2012). The effect of three-month pre-season preparatory period and short-term exercise on plasma leptin, adiponectin, visfatin, and ghrelin levels in young female handball and basketball players. Journal of Endocrinological Investigation, 35(6), 595-601. https://doi.org/10.3275/8014

Rausch, L. K., Hofer, M., Pramsohler, S., Kaser, S., Ebenbichler, C., Haacke, S., Gatterer, H., & Netzer, N. C. (2018). Adiponectin, leptin and visfatin in hypoxia and its effect for weight loss in obesity. Frontiers in Endocrinology, 9, 615. https://doi.org/10.3389/fendo.2018.00615

Revollo, J. R., Grimm, A. A., & Imai, S. (2007). The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Current Opinion in Gastroenterology, 23(2), 164-170. https://doi.org/10.1097/MOG.0b013e32801b3c8f

Romacho, T., Sánchez-Ferrer, C. F., & Peiró, C. (2013). Visfatin/Nampt: an adipokine with cardiovascular impact. Mediators of Inflammation, 2013, 946427. https://doi.org/10.1155/2013/946427

Roupas, N., Mamali, I., Armeni, A., Markantes, G., Theodoropoulou, A., Alexandrides, T., Leglise, M., Markou, K., & Georgopoulos, N. (2012). The influence of intensive physical training on salivary adipokine levels in elite rhythmic gymnasts. Hormone and Metabolic Research, 44(13), 980-986. https://doi.org/10.1055/s-0032-1321816

Roupas, N. D., Mamali, I., Maragkos, S., Leonidou, L., Armeni, A. K., Markantes, G. K., Tsekouras, A., Sakellaropoulos, G. C., Markou, K. B., & Georgopoulos, N. A. (2013). The effect of prolonged aerobic exercise on serum adipokine levels during an ultra-marathon endurance race. Hormones, 12(2), 275-282. https://doi.org/10.14310/horm.2002.1411

Saeidi, A., Saei, M. A., Mohammadi, B., Zarei, H. R. A., Vafaei, M., Mohammadi, A. S., Barati, M., Montazer, M., Razi, O., & Kiyumi, M. H. A. (2023). Supplementation with spinach-derived thylakoid augments the benefits of high intensity training on adipokines, insulin resistance and lipid profiles in males with obesity. Frontiers in Endocrinology, 14, 1141796. https://doi.org/10.3389/fendo.2023.1141796

Samal, B., Sun, Y., Stearns, G., Xie, C., Suggs, S., & McNiece, I. (1994). Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Molecular and Cellular Biology, 14(2), 1431-1437. https://doi.org/10.3389/fendo.2023.1141796

Sheu, W. H. H., Chang, T. M., Lee, W. J., Ou, H. C., Wu, C. M., Tseng, L. N., Lang, H. F., Wu, C. S., Wan, C. J., & Lee, I. T. (2008). Effect of weight loss on proinflammatory state of mononuclear cells in obese women. Obesity, 16(5), 1033-1038. https://doi.org/10.1038/oby.2008.37

Śliwicka, E., Pilaczyńska-Szcześniak, Ł., Nowak, A., & Zieliński, J. (2012). Resistin, visfatin and insulin sensitivity in selected phases of annual training cycle of triathletes. Acta Physiologica Hungarica, 99(1), 51-60. https://doi.org/10.1556/APhysiol.99.2012.1.6

Tok, Ö., Kişioğlu, S. V., Ersöz, H. Ö., Kahveci, B., & Göktaş, Z. (2021). Effects of increased physical activity and/or weight loss diet on serum myokine and adipokine levels in overweight adults with impaired glucose metabolism. Journal of Diabetes and its Complications, 35(5), 107892. https://doi.org/10.1016/j.jdiacomp.2021.107892

Yuksel Ozgor, B., Demiral, I., Zeybek, U., Celik, F., Buyru, F., Yeh, J., & Bastu, E. (2020). Effects of irisin compared with exercise on specific metabolic and obesity parameters in female mice with obesity. Metabolic Syndrome and Related Disorders, 18(3), 141-145. https://doi.org/10.1016/j.jdiacomp.2021.107892

Downloads

Published

2025-09-30

Issue

Section

Articles

How to Cite

Visfatin, Obesity, and Physical Activity: A Key Regulator of Metabolismand Inflammation. (2025). Asian Journal of Pharmaceutical and Health Sciences, 15(3), 3101-3113. https://doi.org/10.5530/ajphs.2025.15.82