Guggul: An Excellent Herbal Panacea

Mahtab Z. Siddiqui
Processing and Product Development Division, Indian Institute of Natural Resins and Gums, Namkum, Ranchi (Jharkhand), India.

ARTICLE HISTORY
Received 29 - Nov -2010
Accepted 01 - Jan - 2011
Available online 10 - Feb - 2011

Keywords:
Guggul, Commiphora wightii (Arnott.) Bhand., Commiphora mukul Engl., Herbal.

ABSTRACT
Guggul, an oleo gum-resin, is a plant exudate of family Burseraceae. In India it is mainly produced by four species i.e. Commiphora mukul Engl., Commiphora wightii (Arnott.) Bhand., Commiphora berryi and Commiphora agallocha. Regionally, it is known by different names also. The use of guggul for a wide variety of diseased conditions, including atherosclerosis, hypercholesterolemia, rheumatism, obesity, respiratory diseases, liver disorders, digestive problems, and menstrual irregularities, finds mention in Ayurveda, the ancient Indian system of medicine. Guggul significantly lowers serum triglycerides and cholesterol as well as low-density lipoproteins (LDL or β-lipoproteins) i.e. the bad cholesterol. It elevates the beneficial high-density cholesterol (HDL or α-lipoproteins) i.e. good cholesterol, prevents blood platelet aggregation and breaks up already formed blood clots. Guggul of Commiphora mukul Engl./Commiphora wightii (Arnott.) Bhand., on fractionation with moderately non-polar organic solvent and subsequent acid-base fractionations, yield ketonic fractions of two isomers of E- & Z-guggulsterone. Pharmacological studies have revealed that the pure guggulsterone isomers have a pronounced hypolipidemic activity. Even though, the cumulative data from in vitro, pre-clinical and clinical studies sufficiently support the therapeutic claims of guggul described in ancient Ayurveda, both larger clinical and longer therapeutical studies are required to be conducted for further strengthening and consolidating such claims. No wonder, if, in near future, Guggul turns out to be the possible panacea for most of the serious chronic ailments presently afflicting the human race.

INTRODUCTION

Guggul, an oleo gum-resin, is a plant exudate of family Burseraceae. Out of 185 existing species of genus Commiphora (Family: Burseraceae), guggul is produced in India only by four species i.e. Commiphora mukul Engl., Commiphora wightii (Arnott.) Bhand., Commiphora berryi and Commiphora agallocha [1]. Out of these four species, Commiphora mukul Engl. and Commiphora wightii (Arnott.) Bhand. are good producers of guggul whereas Commiphora berryi is usually used as a hedge plant all over South India and regionally known as Mulikulva. All other species are found in Africa, Saudi Arabia and their adjoining countries. It is a widely adapted plant, well-distributed in arid regions and propagated both by vegetation and seeds. In India, the main commercial sources of guggul (Commiphora mukul Engl./Commiphora wightii (Arnott.) Bhand.) are Rajasthan, Gujarat, Madhya Pradesh and Karnataka [2]. Regionally, it is known by different names i.e. gulgulu, guggal in Malyalam, gukkal, Maishakshi in Tamil, guggal in Telugu, guggul in Bangla, Indian gugguru in Gujarati, guggal in Hindi and Indian Bedellium in English. The use of guggul for a wide variety of diseased-conditions, including atherosclerosis, hypercholesterolemia, rheumatism, obesity, respiratory diseases, liver disorders, digestive problems, and menstrual irregularities, finds mention in Ayurveda, the ancient Indian system of medicine [3]. Even though, the cumulative data from in vitro, pre-clinical and clinical studies sufficiently support the therapeutic claims of guggul described in ancient Ayurveda, both larger clinical and longer therapeutical studies are required to be conducted for further strengthening and consolidating such claims. Presently, no data on bioavailability, metabolism and pharmacokinetics of guggulsterone in animal models or humans are available. The knowledge of these basic parameters is extremely essential for proper evaluation and appreciation of clinical findings on guggul or guggulsterone. In such a scenario, comprehensive studies for accurate determination of the cumulative effects of these variables on the efficacy of guggul or guggulsterone in the field of therapeutics are eminently necessary [4].
Historical Background

The earliest reference of medicinal and therapeutic properties of guggul (Commiphora mukul Engl./Commiphora wightii (Arnott.) Bhand.) is in Atharva Veda. Detailed account of guggul as a drug is given in the treatises of Charaka (1000 B.C.), Sushruta (600 B.C.), Vagbhata (17th century A.D.) and various Nighantus written in India between 12th and 14th centuries[5-6]. In fact, the herb is mentioned as early as from 3000 to 10,000 years ago in the Vedas, the holy scriptures of India, for treating various human ailments [7]. An Indian medical researcher, G.V. Satyavati was the first who introduced guggul to the scientific world in 1966 [8]. Her studies on the effects of guggul were mainly based on rabbits and the malady resembled the description of atherosclerosis in Ayurved. Later in 1986, it was approved for marketing as a hypolipidemic drug in India with proven safety and efficacy [9-10].

However, in Western medical literature it was introduced only in mid 1990s making it a widely known remedy for treatment / prevention of hypercholesterolemia and related cardiovascular diseases [11].

Tapping & Collection

The traditional tapping methods used for gum-resins by way of blazing, peeling or making deep cuts on the bole are not only unscientific and unproductive but also brutal and destructive. Due to wasteful and injurious tapping-techniques and over-exploitation, the natural population of this small tree of the semi-arid regions of India has depleted fast. There is an urgent need to develop a scientific and sustainable tapping method to increase the yield and ensure the survival of the tapped tree. Presently, an improved tapping-technique using ‘Mitchie Golledge knife’ coupled with ethephon (2-chloroethyl phosphonic acid), a plant growth regulator, can enhance guggul production by about 22 times and help in rapid healing of the wound. April and May are peak months for guggul tapping as established by localization of resins using epifluorescence microscopy [12]. A healthy guggul tree yields about 700-900 gm of resin [10,13].

The tapping and collection process itself leads to variable quality and also differs according to locality, season, size of the tree and surface of the wound exposed. Some pieces of resin have bits of bark and dirt adhering to them and this remains the case even after cleaning and grading. Once it has been collected, the main reasons for quality deterioration of the resin are its repeated handling in passing from the collector to the exporter, and the conditions in which it is stored at the various points in the marketing chain. At high ambient temperatures, loss of valuable volatile essential oil results in sticking and agglomerate into irregular masses. The good quality resin is slightly sticky on breaking, as it contains high oil content.

Impending Threat of Extinction

Over past many centuries, different communities around the world have developed their own systems to use medicinal plants. Some of these systems may be difficult to understand but all-out attempts have been on to cure the illness and sufferings and to make the life more comfortable. Ayurved or Indian system of medicine is one such attempt to improve and enhance the quality of life and has been in use since thousands of years to produce herbal medicines. Now-a-days, it is a very well-established fact that herbal medicines are more suitable to human body than the isolated chemical formulations. Unfortunately, many valuable plants are being lost at an alarmingly disturbing rate. With the rapid depletion of forests, impairing the availability of raw material from plants to developing and designing herbal formulations, the situation has reached a very critical phase/juncture. With the disappearance of about 50% of the tropical forests, the treasure-house/repository of plants and animal-diversity has already been destroyed. Many valuable medicinal plants are practically on the verge of extinction [14-15].

The guggul species too are under threat and have become an endangered species, mainly because of their over-exploitation for gum-resin and fire-wood, besides slower growth-rate of the plant, poor quality of seed-set and excessive tapping [16]. The collection and marketing of guggul is mostly done by the illiterates/tribals in India, being the primary source of their livelihood. There is always ample scope for adulteration and contamination in the whole process. Guggul gets often adulterated with the oleo gum-resin of Boswellia serrata and, sometimes with resin of pinus species. However, Boswellia gum can be identified by its whitish colour and powdery appearance. Pinus resin is stickier in nature and is generally in the form of paste at normal temperature. Heavy metals (such as mercury, arsenic and lead) contamination has also become a very critical problem. Market produce is stored under improper conditions for years which also cause contamination/adulteration by coming into contact with other materials, thereby adversely affecting the efficacy and sometimes even adding to the toxicity. Thus, the non-availability of adequate quality raw material free from adulterants at reasonable price has become a problem for industry, with the demand going up every year. Further, not so significant efforts have been made either by the Governments or the industry to seriously study the problem of supply and demand. We have to follow the GAPs (Good Agricultural Practices) to ensure the use of correct raw material and cover the entire life cycle including the harvesting, processing, transportation and storage.

Composition of Guggul

The oleo gum-resin comprises 0.6 % essential oils, 29.3 % gum, 61 % resin, 6.1 % moisture and 3.2 % insoluble material. The resins have a fragrant aroma because of the presence of essential oils and they account for their commercial importance. The essential oil of gum-resin is one of the most commonly used oils in aromatherapy, paints and varnishes. Pure oleo gum-resin collected in the optimum season hardens slowly, retaining its golden color and transparency. It varies in colour from transparent golden brown to dark brown or dark greenish-brown depending upon the season, mode of collection and impurities found therein.

The gum resin contains Z and E isomers of guggulsterone and its related guggulsterols: guggulsterol-I, guggulsterol-II, guggulsterol-III, guggulsterol-IV, guggulsterol-V and guggulsterol-VI. Major components of essential oil from gum resin are myrcene and dimyrcene [17-18].

http://www.aihps.com
Ayurvedic Formulations of Guggul

Ayurvedic medicines are Dabur India Limited, Sri Baidyanath Ayurvedic Bhawan Limited, The Himalayan Drug Company, Zandu Pharmaceutical Works, Charak Pharmaceuticals, Vicco Laboratories, Diviya and others. Most of the Ayurvedic formulations are in the form of crude extracts which are a mixture of several ingredients and the active principles when isolated individually fail to give desired activity. This implies that the activity of the extract is the synergistic effect of its various components [15].

Traditional Uses of Guggul

Traditional (Indian) uses of Commiphora mukul Engl./Commiphora wightii (Arnott.) Bhand. include as an anti-inflammatory, antispasmodic, carminative, hypoglycemic, diuretic, expectorant, anti-suppurative, thyroid-stimulant, anthelmintic, depurative, vulnerary, antiseptic, demulcent, aphrodisiac stimulant, liver tonic etc.

Gum guggul has also been used to treat hypercholesterolemia, hypertension, impotence, bronchitis, gingivitis, hay-fever, hysteria, inflammation, laryngitis, pharyngitis, pyorrhea, rheumatism, sores, sore-throat, tonsillitis, tumors, wounds, bone-fractures, gout, scrofula, facial paralysis, leprosy, epilepsy, hemorrhoids and treatment of obesity etc. [47-55]. It is also used as incense, to make lacquers, varnishes, and ointments, as a fixative in perfumes, and in medicines.

Modern Applications of Guggul

Modern therapeutic uses of guggul (Commiphora mukul Engl./Commiphora wightii (Arnott.) Bhand.) cover nervous diseases, leprosy, muscle spasms, pyorrhea, scrofula, skin disorders, spongy gums, hypertension, ulcerative pharyngitis, urinary disorders and cardiovascular diseases. It is also an anti-oxidant agent and reduces the stickiness of platelets. The Ayurvedic herb Inula racemosa, in combination with Commiphora mukul, is used to reduce chest pain and dyspnoea of angina [4, 56-62]. A web-page advertising sale of Gugulon states that it helps lower cholesterol, decrease high blood pressure, strengthen the structural system as also the immune system, to benefit the heart, and eliminate toxins.

Dosages & Side Effects

Guggul extracts contain 5 % to 10 % guggulsterone. The Indian Pharmacopoeia (IP) recommends a maximum guggulsterone concentration in supplements of 4 % to 6 % and that gugulipid be taken in an amount equivalent to 25 mg guggulsterones three times a day. Information about one of its clinical trials stated 400 mg gugulipid is equivalent to 25 mg guggulsterones/dose, which would be 6.25 % guggulsterones. In a clinical trial that effectively treated acne, the dosage was 100 mg guggulsterones daily.

Some side-effects have been associated with the crude gum guggul. These include skin rashes, irregular menstruation, diarrhoea, headache, mild nausea, and with very high doses, liver toxicity. Caution is recommended when using guggul in pregnancy and it can cause diarrhoea, hiccups, apprehension, and restlessness. Gum guggul interacts with several drugs.
Future Research Strategy——Suggestions

Traditional system of medicine continues to be widely practised for many reasons. Population-rise, inadequate supply of modern drugs, prohibitive cost of treatment, side-effects of several allopathic drugs and ever-increasing resistance to current drugs for infectious diseases have led to growing emphasis on the use of plant materials as a source of medicines for a wide variety of human ailments. However, a sustained supply of the source-materials often becomes difficult due to the factors like environmental variations, cultural practices, diverse geographical distribution, labour-cost, selection of the superior plant-stock and some exploitative practices by pharmaceutical industry. A fully integrated approach for the cultivation, conservation and preservation of important plant-species through plant molecular biology, plant-tissue culture, research on the rationale and methodology of Ayurvedic medical practices, isolation of active constituents and their development into new therapeutics, standardization and validation of known herbal medicines and other related aspects need to be continuously focussed upon.

Ever since the first therapeutic effect of guggul on animal model in 1966, numerous pre-clinical and clinical trials have been carried out. Differences in experimental designing, quality of methodology, sample-size, subject-population and statistical analysis result in certain inconsistencies in the therapeutic responses. As for the hypolipidemic activity, inconsistencies in individual responses to guggul treatment have also been observed during clinical trials especially in the subjects of different ethnic background, dietary-habits, obesity-status and severity of hyperlipidemia. Additional studies are urgently needed to determine the contributing effects of these variables on the efficacy of guggul or guggulsterone in the treatment of hypercholesterolemia.

Even though, the cumulative data from in vitro, pre-clinical and clinical studies sufficiently support the therapeutic claims of guggul described in ancient Ayurveda, both larger clinical and clinical studies sufficiently support the therapeutic claims of guggul described in ancient Ayurveda, both larger clinical and longer therapeutical studies are required to be conducted for further strengthening and consolidating such claims. Presently, no data on bioavailability, metabolism and pharmacokinetics of guggulsterone in animal models or humans are available. The knowledge of these basic parameters is extremely essential for proper evaluation and appreciation of clinical findings on guggul or guggulsterone. In such a scenario, comprehensive studies for accurate determination of the cumulative effects of these variables on the efficacy of guggul or guggulsterone in the field of therapeutics are eminently necessary.

No wonder, if, in near future, Guggul turns out to be the possible panacea for most of the serious chronic ailments presently afflicting the human race.

REFERENCES


44. Venkatagiravan, Rajagopalan SK, Deve SK, Sasidharan S. Vataraka cases Resembling rheumatoid arthritis and their response to the treatments with guggulu thiktaka and gudcucisneha. Rheumatism 1975; 12(2);


